Поиск в словарях
Искать во всех

Физический энциклопедический словарь - ядерные цепные реакции

 

Ядерные цепные реакции

ядерные цепные реакции
ядерные реакции, в к-рых ч-цы, вызывающие их, образуются как продукты этих реакций. Пока единств. известная Я. ц. р.— реакция деления урана и нек-рых трансурановых элементов (напр., 239Pu) под действием нейтронов. Впервые она была осуществлена итал. физиком Э. Ферми (1942). После открытия деления атомных ядер Ферми, У. Зинн и Л. Силард (США), Г. Н. Флёров показали, что при делении ядра вылетает больше 1 нейтрона:

n+UA+B+. (1)

Здесь А и В — осколки деления с массовыми числами А от 90 до 150, v — число вторичных нейтронов. Если только часть f общего числа вторичных нейтронов может быть использована для продолжения реакции деления," то на 1 нейтрон первого поколения, вызвавший деление, придётся

К=vf нейтронов след. поколения, к-рые вызовут деление, и при K>l (коэфф. размножения нейтронов) число нейтронов n будет возрастать во времени t по закону: n=n0e(K-1)t/,

где т — время жизни поколения нейтронов. Если К-1=0, то число делений в ед. времени постоянно и может быть осуществлена самоподдерживающаяся Я. ц. р. (см. Ядерный реактор). При достаточно больших значениях (К-1) реакция перестаёт быть регулируемой и может привести к ядерному взрыву.

Рассмотрим Я. ц. р. на природном уране, содержащем практически 2 изотопа: 238U (99,29%) и 235U (0,71%). Ядро 238U делится только под действием быстрых нейтронов с энергией ξ>1 МэВ и малым эффективным сечением д=0,3 барна. Напротив, ядро 235U делится под действием нейтронов любых энергий, причём с уменьшением ξ д резко возрастает. При делении 238U или 235U быстрым нейтроном вылетает =2,5 нейтрона с энергией от 0,1 МэВ до 14 МэВ. Это означает, что при отсутствии потерь энергия Я. ц. р. могла бы развиться в природном уране. Однако потери есть: ядра 238U могут захватывать нейтроны (см. Радиационный захват) с образованием 239U. Кроме того, при столкновении нейтронов с ядром происходит неупругое рассеяние, при к-ром энергия нейтронов становится ниже 1 МэВ, и они уже не могут вызвать деление 238U. Большая часть таких нейтронов испытывает радиац. захват или вылетает наружу. В результате Я. ц. р. не может развиться.

Для возбуждения Я. ц. р. в естеств. уране используется замедление нейтронов при их столкновении с лёгкими ядрами (2Н, 12С и др.). Оказалось, что сечение деления 235U на тепловых нейтронах (5)д =582 барна, сечение радиац. захвата в 235U (с образованием 236U) р(5) = 100 барн, а в 238U р(8) = 2,73 барна. При делении тепловыми нейтронами =2,44. Отсюда следует, что число нейтронов т), к-рые могут вызвать деление, приходящееся на 1 поглощённый тепловой нейтрон предыдущего поколения, равно:

Здесь 8/5 — отношение концентраций 238U и 235U, что означает возможность развития Я. ц. р. в смеси природного урана с замедлителем.

Однако при делении на тепловых нейтронах рождаются быстрые нейтроны, к-рые, прежде чем замедлиться до тепловой энергии, могут поглотиться. Сечение радиац. захвата 238U имеет резонансный характер, т. е. достигает очень больших значений в определённых узких интервалах энергии. В однородной (гомогенной) смеси вероятность резонансного поглощения слишком велика, чтобы Я. ц. р. на тепловых нейтронах могла осуществиться. Эту трудность обходят, располагая уран в замедлителе дискретно, в виде блоков, образующих правильную решётку. Резонансное поглощение ней-

916



тронов в такой гетерогенной системе резко уменьшается по двум причинам: 1) сечение резонансного поглощения столь велико, что нейтроны, попадая в блок, поглощаются в поверхностном слое, поэтому часть атомов урана не участвует в резонансном поглощении; 2) нейтроны резонансной энергии, образовавшиеся в замедлителе, могут не попасть в уран, а, замедляясь при рассеянии на ядрах замедлителя, «уйти» из опасного интервала энергии. При поглощении теплового нейтрона в блоке рождается т) вторичных быстрых нейтронов, каждый из к-рых до выхода из блока вызовет небольшое кол-во делений ядер 238U. В результате число быстрых нейтронов, вылетающих из блока в замедлитель, равно , где  — коэфф. размножения на быстрых нейтронах; если  — вероятность избежать резонансного поглощения, то только ξ нейтронов замедлятся до тепловой энергии. Часть тепловых нейтронов поглотится в замедлителе. Пусть 9 -вероятность того, что тепловой нейтрон поглотится в уране (коэфф. теплового использования нейтронов). В гомогенной системе:

Здесь U, з— концентрации урана и замедлителя, Uп ,зп— соответствующие сечения поглощения, Ф — потоки нейтронов. В результате на 1 тепловой нейтрон первого поколения, совершающий деление, приходится К= нейтронов след. поколения, к-рые могут вызвать деление. К — коэфф. размножения нейтронов в бесконечной гетерогенной системе. Если K>1, то реакция деления в бесконечной решётке будет нарастать экспоненциально.

В системе, имеющей огранич. размеры, часть нейтронов может покинуть среду. Обозначим долю нейтронов, вылетающих наружу, через(1-Р), тогда для продолжения реакции деления остаётся КэфP нейтронов, и если Kэф>1, то число делений растёт экспоненциально и реакция явл. саморазвивающейся. Т. к. число делений и, следовательно, число вторичных нейтронов в размножающей среде пропорц. её объёму, а их вылет пропорц. поверхности окружающей среды, то Я. ц. р. возможна только в среде достаточно больших размеров. Напр., для шара радиуса R отношение объёма к поверхности равно R/3, и, следовательно, чем больше R, тем меньше утечка нейтронов. Если радиус размножающей среды становится достаточно большим, чтобы в системе протекала стационарная Я. ц. р., т. е. Kэф-1=0, то такую систему наз. критической, а её радиус — критическим.

Для осуществления Я. ц. р. в природном уране на тепловых нейтронах используют в качестве замедлителя в-ва с малым сечением радиац. захвата (графит или тяжёлую воду D2O). В замедлителе из обыкновенной воды Я. ц. р. на природном уране невозможна из-за большого поглощения нейтронов водородом.

Чтобы интенсивность Я. ц. р. можно было регулировать, время жизни одного поколения нейтронов должно быть достаточно велико. Время жизни 0 тепловых нейтронов мало (0~10-3с). Однако наряду с нейтронами, вылетающими из ядра мгновенно (за время 10-16 с), существует небольшая доля  т. н. запаздывающих нейтронов, вылетающих после -распада осколков деления со ср. временем жизни ~14,4 с. Для запаздывающих нейтронов при делении 235U 0,7•10-2. Если Kэф>1+, то время Т «разгона» Я. ц. р. (время, за к-рое число делений увеличивается в е раз) определяется соотношением:

т. е. запаздывающие нейтроны не участвуют в развитии Я. ц. р. Практически важен др. предельный случай: Kэф-1<<, тогда:

т. е. мгновенные нейтроны не играют роли в развитии реакции. Т. о., если Kэф<1+, то Я. ц. р. будет развиваться только при участии запаздывающих нейтронов за время порядка минут и будет хорошо регулируемой.

Я. ц. р. осуществляется также на уране, обогащённом 235U и в чистом 235U. В этих случаях она идёт и на быстрых нейтронах. При поглощении нейтронов в 238U образуется 239Np, a из него после двух -распадов — 239Pu, к-рый делится под действием тепловых нейтронов с =2,9. При облучении нейтронами 232Th образуется делящийся на тепловых нейтронах 233U (см. Ядерное топливо). Кроме того, Я. ц. р. возможна в 241Pu и изотопах Cm и Cf с нечётными массовыми числами.

• См. лит. при ст. Ядерный реактор.

П. Э. Немировский.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):